Free Essay

Physics 1

In: Science

Submitted By katherinegib
Words 1360
Pages 6
Galileo Galilei
Introduction
It is no question that Galileo was an influential scientist in his time and still is today (picture located on page 6 from google.com). Though his most notable discoveries were in the field of astronomy, we cannot label him simply as an astronomer. He authored many important works including, Sidereal Messenger (also known as Starry Messenger), but unfortunately, due to the power of the Catholic church in his native Italy, his work in astronomy was widely rejected by his countrymen. His contributions to physics also place him in the ranks of the greatest scientists of all time. Without Galileo’s contributions to astronomy, mathematics, and physics, we would lack many basic understandings of the universe and our world.
Body
Galileo Galilei was the son of a musician born in Pisa, Italy in 1564. He studied medicine, but his interests laid in mathematics and physics. At age twenty-five, he became a professor of mathematics at Pisa. In 1591, he moved to Padua and lived there for many years. During his time in Padua, he had a twelve-year long relationship with a Venetian woman named Marina Gamba. The couple never married, but they had three children, two daughters and one son. Later, he moved to Florence where he lived for the remainder of his life. He died in 1642, coincidentally, the year of Sir Isaac Newton’s birth (“Galileo, Galilei (1564 - 1642)”). Galileo’s discoveries contributing to the fields of astronomy are what he is most famous for though this was not his only field of study (picture of his telescope invention on page 6, picture 2 from Rosen). Less notable, though no less important than his astronomical work, are Galileo’s contributions to physics, in particular to the areas of optics and motion, and mathematics. He employed his knowledge of mathematics both as a professor and as means to provide proof to his discoveries such as the height of the mountains on the moon. There is dispute about the extent to which Galileo was influential to philosophy. If we take philosophy to mean the discussion of unanswered questions, then yes, Galileo was as philosopher. But, if we view philosophy as the discussion of metaphysical questions, then he was not (Finocchario, 441). Though he studied medicine, his true passions were mathematics and physics and in 1610, he was appointed to the position of court mathematician and philosopher to the Grand Duke of Tuscany after he discovered of the four moons of Jupiter (located on page 7, first picture from google.com) while working as a mathematics professor in Padua the previous year (Findlen, 1). Before Galileo, there was one earth-shattering discovery in astronomy: Nicolaus Copernicus’s heliocentric model of the solar system. Galileo accepted Copernicus’s theory and believed in the heliocentric solar system. Though we know it to be true today, in the time of Copernicus, and Galileo after him, the idea that Earth was not the center of the solar system was considered radical and caused both Copernicus and Galileo to conflict with the Roman Catholic Church. In fact, the Copernican theory was denounced by the Pope as “dangerous to the faith” in 1616 and Galileo was warned not to uphold it or teach it.
Galileo has been called the father of modern physics and for good reason. Many scientists have traced the roots of their work back to Galileo’s observations including Isaac Newton who gave credit to Galileo for the discovery of many concepts including, but not limited to, inertia and the parabolic trajectory of projectiles (Finocchario, 439).
Galileo also discovered the isochronism, or the constant time of swinging, of a pendulum while he was a medical student by keeping time with his own pulse or, as legend states, by observing a swinging lamp in the Cathedral of Pisa. He observed that the amount of time it took for the pendulum to complete one oscillation was the same no matter the length of the pendulum. He used this knowledge to design a clock that employed a short pendulum as a way to keep time. His son built the clock after his death.
Most importantly, Galileo observed that all objects fall at the same speed regardless of their weight. However, contrary to legend, he did not experiment by dropping weights off the leaning tower of Pisa but rather by rolling spheres down an inclined plane.
Galileo’s most famous discoveries are his contributions to astronomy. Though he did not invent the telescope (it had long been used by sailors and soldiers to view objects in the distance) he improved upon it. The telescope used to view the heavens was supposedly brought to Venice by the Dutch in 1609. Catching wind of this, Galileo built his own telescope and then within a week made another improved version (Rosen, 180). He used it to observe Earth’s moon and other bodies in the solar system. He was the first to observe the phases of Venus, the composite structure of Saturn, Jupiter’s four moons, and mountains on Earth’s moon. Pictured above is Galileo’s personal telescope.
Galileo’s description of the moon was also a point of controversy. As Galileo observed, and as we know today, the moon is a solid object whose surface is rough: covered with mountains and craters. Though this does not shock us, to those living in 17th century Italy, this description was frightening because it did not coincide with a description of the moon in the book of Revelation. The crescent moon, as it appears in the described image, is smooth, possibly translucent, and immaculate. He also developed a mathematical formula for determining the height of the mountains on the moon that employed the geometry of triangles to calculate the height (Swerdlow, 251, 249). Some of Galileo’s hand drawn images of the moon are picture below.
Galileo did not receive any awards or honors for his work during his time. Instead, he was called up by the Holy Office of the Inquisition in 1633 to stand trial for heresy because of his support of the Copernican heliocentric solar system model. He was found guilty and sentenced to house arrest for the rest of his life at the age of 69 and his books were banned. Because of this, Galileo’s supporters in Protestant Holland smuggled his works out of Italy to be published. Scholars also snatched his books up because they were banned, making him more famous.
Galileo was considered a true Renaissance man. As a fun fact, in addition to being an incredible scientist, he was a talented musician and artist. Toward the end of his life, he gradually went blind. Galileo was also friends with Pope Urban VIII who dedicated his book The Assayer to him in 1623. In 1992, Pope John Paul II pardoned Galileo of his guilty conviction for heresy.
Conclusion
Galileo’s contributions to astronomy, physics, and mathematics are considered priceless by today’s standards. Despite his conflict with the church, his ideas spread and influenced the scientists that followed him. Galileo’s discoveries laid the groundwork for the development of principles and applications that we know and use today (statue picture of Galileo located on page 7, picture 2 from google.com).
Honor Pledge
“This work is my own. I have neither given nor received any unauthorized help.” 3/18/13
Kelsey Gibson
Works Cited
Findlen, Paula E. “Galileo, Scientific Entrepreneur.” Science. 7 Jul. 2006: 46-47. JSTOR. Web. 17 Mar. 2013.
Finocchario, Maurice A. “Galileo as Scientist.” Science. 26 Oct. 1979:439-441. JSTOR. Web. 17 Mar. 2013.
“Galileo, Galilei (1564-1642).” Topic Pages. Boston: Credo Reference Contributors, 2013. Credo Reference. 18 Mar. 2013.
Hanson, Norwood R. “ Galileo’s Discoveries in Dynamics.” Science. 29 Jan. 1965:471-477. JSTOR. Web. 17 Mar. 2013.
Rosen, Edward. “Galileo and The Telescope.” The Scientific Monthly. Mar. 1951:180-182. JSTOR. Web. 17 Mar. 2013.
Sis, Peter. Starry messenger: a book depicting the life of a famous scientist, mathematician, astronomer, philosopher, physicist, Galileo Galilei. New York: Farrar Straus Giroux, 1996. Print.
Swerdlow, Noel M. The Cambridge Companion to Galileo. Cambridge University Press. Print.

Wade, Nicholas J. “Galileo’s Vision.” Cortex. 2009:793-794. Science Direct. Web. 17 Mar. 2013.

[pic]
[pic]
[pic]
[pic]…...

Similar Documents

Free Essay

Physics

...Roger Truong Week 4 Physics Notes Experiment 1 * Rise and fall is pressure in the sound wave makes the flame move * The rise and fall in pressure makes the click sound * The rise and fall in the disturbance to what brings the sound to your ear * The square waves to what makes the flame move and bring the sound to your ear * The air molecules don’t move the disturbance does * For a 0.5 Hz your hear a click and the flame moves and resets * For 100 Hz the flame remains displaced and doesn’t recover * The transition from a click to a tone is between 20 and 50 Hz Reflection * Change in direction of a wave at an interference between two media wave returns into media from which it originated form. Wave Refraction * Change in direction of a wave when it passes from one medium to another caused by the different speeds of a wave * When water moves into different depths Wave Diffraction * Bending waves when they encounter an obstacle Absorption of waves * Reduction of energy in wave consumed by medium which it travels. * The main cause of absorption is Viscosity Interference * Two or more waves form coming together to make up a new wave Resonance * Tendency of a system to oscillate at a large amplitude at certain frequencies * Tendency to magnify a sound * The difference between an acoustic and electric guitar Wave Motion in Space and Time * Wave Motion in Space * Horizontal......

Words: 323 - Pages: 2

Free Essay

Physics

...TermPaperWarehouse.com - Free Term Papers, Essays and Research Documents The Research Paper Factory JoinSearchBrowseSaved Papers Home Page » Science Project 1 In: Science Project 1 Project 1 Write an essay of 1500 words, giving credible references on the use of physics in your daily activities. You need to mention 5 or more activities where physics is used. Remember to follow the APA style and give references. Physics is used in so many ways that most people do not even realize that they are using it. Even a stay at home mom uses physics more than one would think. Daily activities that many people do include physics without thinking about it, such as driving a car, using a headrest in a car, walking and running, flushing the toilet, and washing and drying clothes. Driving a car has many different aspects of physics involved, but today only acceleration, speed, and velocity will be discussed. People talk in terms of physics everyday without even knowing that is what they are discussing. For example, “speed” limit, how quickly a car can “accelerate,” and when they add a direction, they are actually talking about the velocity of a vehicle because velocity has a magnitude and direction, not just magnitude. According to Barry Parker in Issac Newton School of Driving, “you are accelerating and decelerating most of the time when you take a trip through the busy streets of a city, either by stepping on the gas, braking, or turning the steering wheel.”......

Words: 490 - Pages: 2

Free Essay

Physics

...Leaning Tower of Pisa by which he showed that, contrary to Aristotle’s account, the speed of a falling object is independant of its mass. It is precisely this power — to overturn wrong ideas, even if though they have been believed true for centuries, and to suggest a more complete understanding — that makes experimentation so central to all of the sciences. This experimental focus was not the last development in the physics that we’ll be looking at, though it did help pave the way for it. This next and final (for our purposes) leap was due to Newton — using mathematics to describe physics. After that, classical mechanics was essentially complete, with “only” quite a few decades of improvements and polishing before the introduction of relativity and quantum mechanics. It is physics at this level, the state of the art of classical mechanics circa the mid 19th century, that we’ll be studying in this course. . Physics Timeline Dates | Characters | Theories and discoveries | 500 – 1 BC | Archimedes, Aristotle | Heliocentric theory, geometry | 1 – 1300 AD | Al-hazen, Ptolemy in Egypt | Optics, geocentric theory | 1301 – 1499 | Leonardo de Vinci, Nicolas Cusanus | Earth is in motion,Occam’s Razor | 1500 – 1599 | Nicolaus Copernicus,Tycho Brahe | Heliocentric theory revived, astronomy | 1600 – 1650 | Galileo Galilei, Johannes Kepler | Telescope,laws of planetary motion | 1651 – 1699 | Isaac Newton, Robert Boyle | Newtons Laws,......

Words: 667 - Pages: 3

Free Essay

Physics

...Assignment in Physics... 1. Definition of Science, Major branches of science 2. Scientific Method 3. Definition of Physics and its major branches 4. Notable Physicist and their contribution 5. Importance of Physics in our everyday life and in our society. (Write the references) Short bond paper, written or computerized (font: Times New Roman/font size: 12) Reading assign. Measurement Diff. system of measurement fundamentals and derive quantities scientific notation rules in significant figures conversion of units http://www.hep.man.ac.uk/babarph/babarphysics/physicists.html ) I.1 Science The intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment. I.2 The Branches of Science The Physical Sciences * Physics: The study of matter and energy and the interactions between them. Physicists study such subjects as gravity, light, and time. Albert Einstein, a famous physicist, developed the Theory of Relativity. * Chemistry: The science that deals with the composition, properties, reactions, and the structure of matter. The chemist Louis Pasteur, for example, discovered pasteurization, which is the process of heating liquids such as milk and orange juice to kill harmful germs. * Astronomy: The study of the universe beyond the Earth's atmosphere. The Earth Sciences * Geology: The science of the origin, history, and structure...

Words: 1431 - Pages: 6

Premium Essay

Physics Unit 8 Assignment 1

...Unit 8 Assignment 1 20. Because the magnetic force which deflects the electrons is defined by F = q * v x B (v x B is the cross product of the 2 vectors), so: The force vector would always be perpendicular to both the v and B vectors. Since the force is perpendicular to the electron's velocity vector, and thus the path of the electrons, the work done by the field on the electrons is 0, because W = F*d*cos(theta), and theta=90 degrees, therefore cos(theta)=0, and W=0 If W = 0 then there is no change in the kinetic energy of the electrons, thus their speed remains constant; the acceleration provided by the magnetic field was used only to change the direction. 31. Well, it depends upon the Sensitivity setting of the metal detector. As it is clear, the threshold value of the metal detector's sensitivity can be adjusted to suit various needs. so it is obviously set to discard small variations caused by a very small pieces of metal. 34. Yes, There is nothing seperately as a DC motor or DC generator. It is simply a DC machine. It acts either as a motor or a generator depending on the input. If the input is mechanical energy, the output is electrical : this is generator action If the input is electrical, the output is mechanical torque: this is motoring action 48. when you step up the voltage with transformers you lose current. It is a trade off and motors are not 100% effective so you would have a power loss. Unit 2 Assignment 1 8. when your......

Words: 647 - Pages: 3

Free Essay

Physics Assignment 1

...Exercise 5A, Case 1 I can see I will need the following equations to help me solve the next few cases involving the power plant. V=IR P=IV P=I2R Where V represents Voltage drop, I represents Current, R represents Resistance, & P represents Power lost. This intro tells me that I will be using a plant voltage of 120V to solve the first cases. I can see that I’ll be predicting various voltage drops across a completed circuit, from a power plant to a house. Exercise 5A, Case 2 If nothing is hooked up in the house: 1.) What is the current through the supply wire? To solve this I go back to my equation, deciding to use I=V/R , but thinking back on the intro I see there is nothing hooked up in the house; therefore, there is no current. The answer is 0. 2.) What is the voltage drop along the supply wire? To solve you would use the equation V=IR, I is 0; therefore, the voltage drop will also be 0. 3.) What is the amount of power converted to thermal energy (Power loss)? To solve this one, P=IV, I and V are both 0; therefore no power is lost in this Case. My predicted answers were correct in this case. If there is nothing in the house, then no current is flowing through the wires. Exercise 5A, Case 3 Now I’m asked that if I’m using super conducting wires with 0 electrical resistance and we plug in a 100 Watt lamp inside the house: 1.) What is the current through the circuit? I=P/V (100 watts)/(120 volts)= 0.83 Amps 2.) What is the resistance of......

Words: 2238 - Pages: 9

Premium Essay

Physics 1: Chapter 5 Quiz Questions

...product of the two vectors shown. 1) +96 2) -96 3) +51 4) -51 5) -35 A 2.0-kg block sliding on a frictionless horizontal surface is attached to one end of a horizontal spring (k = 600 N/m) which has its other end fixed. The speed of the block when the spring is extended 20 cm is equal to 3.0 m/s. What is the maximum speed of this block as it oscillates? 1) 4.6 m/s 2) 5.3 m/s 3) 5.7 m/s 4) 4.9 m/s 5) 3.5 m/s A block slides on a rough horizontal surface from point A to point B. A force (magnitude P = 2.0 N) acts on the block between A and B, as shown. Points A and B are 1.5 m apart. If the kinetic energies of the block at A and B are 5.0 J and 4.0 J, respectively, how much work is done on the block by the force of friction as the block moves from A to B? 1) -3.3 J 2) +1.3 J 3) +3.3 J 4) -1.3 J 5) +4.6 J 1) +96 1) 4.6 m/s 1) -3.3 J A 1.5-kg object moving along the x axis has a velocity of +4.0 m/s at x = 0. If the only force acting on this object is shown in the figure, what is the kinetic energy of the object at x = +3.0 m? 1) 18 J 2) 21 J 3) 23 J 4) 26 J 5) 8 J A force acting on an object moving along the x axis is given by Fx = (14x - 3.0x2) N where x is in m. How much work is done by this force as the object moves from x = -1 m to x = +2 m? 1) +12 J 2) +28 J 3) +40 J 4) +42 J 5) -28 J If = 5.0, = 8.0, and a = 30°, determine the scalar product of the two vectors shown. 1) -35 2) +35 3) -20 4) +20 5) +40 1) 18 J 1) +12 J 1) -35 A 3.0-kg block is on a......

Words: 3009 - Pages: 13

Free Essay

Physics

...Introductory Physics I Elementary Mechanics by Robert G. Brown Duke University Physics Department Durham, NC 27708-0305 rgb@phy.duke.edu Copyright Notice Copyright Robert G. Brown 1993, 2007, 2013 Notice This physics textbook is designed to support my personal teaching activities at Duke University, in particular teaching its Physics 141/142, 151/152, or 161/162 series (Introductory Physics for life science majors, engineers, or potential physics majors, respectively). It is freely available in its entirety in a downloadable PDF form or to be read online at: http://www.phy.duke.edu/∼rgb/Class/intro physics 1.php It is also available in an inexpensive (really!) print version via Lulu press here: http://www.lulu.com/shop/product-21186588.html where readers/users can voluntarily help support or reward the author by purchasing either this paper copy or one of the even more inexpensive electronic copies. By making the book available in these various media at a cost ranging from free to cheap, I enable the text can be used by students all over the world where each student can pay (or not) according to their means. Nevertheless, I am hoping that students who truly find this work useful will purchase a copy through Lulu or a bookseller (when the latter option becomes available), if only to help subsidize me while I continue to write inexpensive textbooks in physics or other subjects. This textbook is organized for ease of presentation and ease of learning. In particular, they......

Words: 224073 - Pages: 897

Free Essay

Physics Formal Report Exp 1

...Members: MANUEL, Frances Lauren T. MARASIGAN, Jhoellah D. MENDOZA, Erwin James B. MINGUILLO, Roberto P. NERA, Franco Niño Angelo P. NG, Cerwin Jerricho C. GROUP 5 2FMT Date Performed: August 27, 2015 Date Submitted: September 3, 2015 EXPERIMENT #1—The Vernier and Micrometer Caliper ABSTRACT In this experiment, the group used a Vernier and micrometer caliper to measure lengths, widths, depths and diameters of various objects. The Vernier and micrometer calipers’ accuracy aided the group to find the volume and density of the objects—namely the steel metal cube, washer and marble. They also used the triple beam balance to weigh the objects. The group compared the density values they computed to the standard value, and also computed for their results’ percentage error. In the end, the group concluded that the micrometer caliper is easier to use, and somehow more error-proof compared to the Vernier caliper. 1. Differentiate the Vernier and micrometer scales. The Vernier scale has the accuracy of 0.05 mm and the capacity of 155 mm. It has a slider, and is usually used for measuring inside and outside diameter, length and width as well as depth. Meanwhile, the micrometer caliper has the accuracy of 0.01mm and has a 26mm capacity. It has a rotary handle and is usually used for measuring diameters and width. 2. Draw the figure for the micrometer readings below. a. 3.86 mm b. 1.59 mm 3. State some of the errors...

Words: 456 - Pages: 2

Premium Essay

Physics

...Introduction In this project questions relating to Thermal Physics and Kinetic theory will be discussed and also diagrams to further explain them will be attached. Section B of the Physics syllabus will be completed by the end of this project. Bibliography http://www.google.com/search?q=Laboratory+thermometer&rlz=1C1CHWA_enLC632LC632&oq=Laboratory+thermometer&aqs=chrome..69i57j69i59j69i60&sourceid=chrome&es_sm=93&ie=UTF-8#q=explain+the+design+of+a+laboratory+thermometer http://en.m.wikipedia.org/wiki/Silicate_glass#Silicate_glass http://www.livescience.com/39994-kelvin.html 1. Thermal energy transfer by: * Conduction is the flow of heat energy through materials and substances in direct contact with each other. A conductor is a material that permits heat energy to flow freely within it. The better the conductor the more rapidly heat will be transferred. Conduction takes place when heat is supplied to a substance, the particles in that substance gain more energy and vibrate more. These particles then bump into neighboring particles and some of their energy is transferred to them. This process continues and energy is eventually transferred from the hotter end to the colder end of the object. * Thermal convection is transferred from hot places to cold places by convection. Convection occurs when warmer areas of gas or liquid rises to cooler areas of that gas or liquid. The cooler gas or liquid replaces the warmer areas......

Words: 1957 - Pages: 8

Premium Essay

Physics

...No. Information on Every Subject 1. Unit Name: Physics I 2. Code: FHSP1014 3. Classification: Major 4. Credit Value: 4 5. Trimester/Year Offered: 1/1 6. Pre-requisite (if any): No 7. Mode of Delivery: Lecture, Tutorial, Practical 8. Assessment System and Breakdown of Marks: Continuous assessment: 50% - Theoretical Assessment (Tests/Quizzes/Case Studies) (30%) - Practical Assessment (Lab reports/Lab tests) (20%) Final Examination 9. 10. 50% Academic Staff Teaching Unit: Objective of Unit: The aims of this course are to enable students to: • appreciate the important role of physics in biology. • elucidate the basic principles in introductory physics enveloping mechanics, motion, properties of matter and heat. • resolve and interpret quantitative and qualitative problems in an analytical manner. • acquire an overall perspective of the inter-relationship between the various topics covered and their applications to the real world. • acquire laboratory skills including the proper handling and use of laboratory apparatus and materials. 11. Learning Outcome of Unit: At the end of the course, students will be able to: 1. Identify and practice the use of units and dimensional analysis, uncertainty significant figures and vectors analysis. 2. Apply and solve problems related to translational and rotational kinematics and dynamics in one and two dimensions. 3. Apply and solve problems related to......

Words: 765 - Pages: 4

Premium Essay

Physics

...Physics Lab 4 Part 1: Friction Parabola Track 3a. Kinetic energy is the highest when the skate board has reached its lowest point. 3b. Kinetic energy is the lowest when in the middle of the drop. 4a. Potential energy is the highest when the skate board has reached the highest point. 4b. Potential energy is lowest when in the middle of the drop. 5a. Total energy is the highest when potential energy is at its highest point. 6. The value of thermal energy is 0 only when potential energy is highest. David Del Rio Physics PH 2530 Lab 4 Energy 04/06/2015 Part 1: Loop Track 8. When a skateboarder moves, what happens to the kinetic and potential energy? Conservative (closed) or non-conservative (open) system? - Kinetic energy rises as the skateboarder moves downward. -potential energy rises as the skateboarder moves up. - Non-Conservative 9. Where is the skateboarder at on the ramp when he reaches the maximum point of potential energy? 4546.93 11. m = 76./kg The skateboarders mass = 76 kg 12a. calculated mass = 76 kg 12b. Actual mass 75 kg 12c. Comparison = .98% 13. When the coefficient is adjusted half way the kinetic energy decreases to 0 as to the potential energy decreases and finally stabilizes. - This is a closed system. Part 2: Friction Parabola Track 2a. kinetic energy is highest when the skaters’ board is at the lowest point 2b. in the middle of the drop the kinetic energy is highest. 3a. potential energy is the highest when the......

Words: 457 - Pages: 2

Premium Essay

Physics

...This acceleration is usually represented with the symbol g. Physics students measure the acceleration due to gravity using a wide variety of timing methods. In this experiment, you will have the advantage of using a very precise timer connected to the calculator and a Photogate. The Photogate has a beam of infrared light that travels from one side to the other. It can detect whenever this beam is blocked. You will drop a piece of clear plastic with evenly spaced black bars on it, called a Picket Fence. As the Picket Fence passes through the Photogate, the LabPro or CBL 2 interface will measure the time from the leading edge of one bar blocking the beam until the leading edge of the next bar blocks the beam. This timing continues as all eight bars pass through the Photogate. From these measured times, the program will calculate the velocities and accelerations for this motion and graphs will be plotted. Picket fen ce Figure 1 OBJECTIVE • Measure the acceleration of a freely falling body (g) to better than 0.5% precision using a Picket Fence and a Photogate. MATERIALS LabPro or CBL 2 interface TI Graphing Calculator DataGate program Physics with Calculators Vernier Photogate Picket Fence clamp or ring stand to secure Photogate Modified from and reported with permission of the publisher Copyright (2000), Vernier Software & Technology 5-1 Experiment 5 PRELIMINARY QUESTIONS 1. Inspect your Picket Fence. You will be dropping it......

Words: 2335 - Pages: 10

Premium Essay

Physics

...PhysRozz Midterm 2012 1. Which is not a vector quantity? 1) electric charge 2) displacement 5. As the angle between two concurrent forces decreases, the magnitude of the force required to produce equilibrium 1) decreases 3) velocity [via06-07] 2) increases 3) remains the same 4) magnetic field strength 2. An astronaut standing on a platform on the Moon drops a hammer. If the hammer falls 6.0 meters vertically in 2.7 seconds, what is its acceleration? 6. A child walks 5.0 meters north, then 4.0 meters east, and finally 2.0 meters south. What is the magnitude of the resultant displacement of the child after the entire walk? 1) 4.4 m/s 2 2) 1.6 m/s 2 1) 1.0 m 2) 5.0 m 3) 2.2 m/s 2 4) 9.8 m/s 2 3) 3.0 m 4) 11.0 m 3. A 2.00-kilogram object weighs 19.6 newtons on Earth. If the acceleration due to gravity on Mars is 3.71 meters per second 2 , what is the object’s mass on Mars? 1) 2.64 kg 2) 2.00 kg 3) 19.6 N 7. The diagram above represents a spring hanging vertically that stretches 0.075 meter when a 5.0newton block is attached. The spring-block system is at rest in the position shown. 4) 7.42 N 4. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. The value of the spring constant is 1) 38 N/m When the car is in the position shown, its acceleration is directed toward the 1) south 2) east 3) west 2) 650...

Words: 1799 - Pages: 8

Free Essay

Physics

...COURSE PHYSICS 1 (CORE MODULES) Coordinators Dr. Oum Prakash Sharma Sh. R.S. Dass NATIONAL INSTITUTE OF OPEN SCHOOLING A-25, INSTITUTIONAL AREA, SECTOR-62, NOIDA-201301 (UP) COURSE DESIGN COMMITTEE CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Maidan Garhi, Delhi MEMBERS Prof. A.R. Verma Former Director, National Physical Laboratory, Delhi, 160, Deepali Enclave Pitampura, Delhi-34 Dr. Naresh Kumar Reader (Rtd.) Deptt. of Physics Hindu College, D.U. Dr. Oum Prakash Sharma Asstt. Director (Academic) NIOS, Delhi Prof. L.S. Kothari Prof. of Physics (Retd.) Delhi University 71, Vaishali, Delhi-11008 Dr. Vajayshree Prof. of Physics IGNOU, Maidan Garhi Delhi Sh. R.S. Dass Vice Principal (Rtd.) BRMVB, Sr. Sec. School Lajpat Nagar, New Delhi-110024 Dr. G.S. Singh Prof. of Physics IIT Roorkee Sh. K.S. Upadhyaya Principal Jawahar Navodaya Vidyalaya Rohilla Mohammadabad (U.P.) Dr. V.B. Bhatia Prof. of Physics (Retd.) Delhi University 215, Sector-21, Faridabad COURSE DEVELOPMENT TEAM CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Delhi MEMBERS Prof. V.B. Bhatia 215, Sector-21, Faridabad Prof. B.B. Tripathi Prof. of Physics (Retd.), IIT Delhi 9-A, Awadhpuri, Sarvodaya Nagar Lucknow-226016 Sh. K.S. Upadhyaya Principal Navodaya Vidyalaya Rohilla Mohammadabad, (U.P.) Dr. V.P. Shrivastava Reader (Physics) D.E.S.M., NCERT, Delhi EDITORS TEAM CHAIRMAN Prof. S.C. Garg Former Pro-Vice Chancellor IGNOU, Delhi MEMBERS Prof. B.B. Tripathi Prof. of Physics......

Words: 131353 - Pages: 526