Premium Essay

Submitted By imran144

Words 3639

Pages 15

Words 3639

Pages 15

Reckitt Benckiser

A Report on

“Multiple Regression Analysis of Determinants of Dividend Payout Ratio of Reckitt Benckiser”

Acknowledgement

It is a great honor for us to submit this report to our respected teacher. At first we want to convey our thanks and gratitude to her for assigning us to prepare report entitled, “Reckitt Benckiser”.

It would not have been possible for us to complete the report, but for his help.

All of the efforts ended at a desired point for the cooperation and hard work, Sincerity and seriousness of our group members. So, all of them as well as our group members are worth of pure compliment.

Letter of Transmittal

February 14, 2015

Dear Sir,

Subject: Submitting the report on “Determinants of dividend payout ratio of Reckitt Benckiser”.

We are submitting a well-structured and comprehensive report on Reckitt Benckiser”. Despite many constraints like scope and access to information, we have tried to create something satisfactory.

We have tried to follow your guideline in every aspects of preparing this report. We have concentrated on the most relevant and logical areas to make our report coherent as well as practical.

We hope this report will entice your kind appreciation.

Sincerely,

________________

Executive Summery

Reckitt Benckiser is a global leader in household, health and personal care sectors and one of the fast growing multinationals. In our report we mainly deal with Multiple regression analysis of determinants of dividend payout ratio of Reckitt Benckiser. The dependent variable dividend payout depends on several independent variables such as profit, cash, tax, institutional shareholder and growth. We found that the company’s dividend payout significantly relates with profit and market/book value ratio. It is inversely related with profit, tax and institutional shareholder. In…...

Premium Essay

...Introduction Regression analysis was developed by Francis Galton in 1886 to determine the weight of mother/daughter sweet peas. Regression analysis is a parametric test used for the inference from a sample to a population. The goal of regression analysis is to investigate how effective one or more variables are in predicting the value of a dependent variable. In the following we conduct three simple regression analyses. Benefits and Intrinsic Job Satisfaction Regression output from Excel SUMMARY OUTPUT Regression Statistics Multiple R 0.616038 R Square 0.379503 Adjusted R Square 0.371338 Standard Error 0.773609 Observations 78 ANOVA df SS MS F Significance F Regression 1 27.81836 27.81836 46.48237 1.93E-09 Residual 76 45.48382 0.598471 Total 77 73.30218 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 2.897327 0.310671 9.326021 3.18E-14 2.278571 3.516082 2.278571 3.516082 X Variable 1 0.42507 0.062347 6.817798 1.93E-09 0.300895 0.549245 0.300895 0.549245 Graph Benefits and Extrinsic Job Satisfaction Regression output from Excel SUMMARY OUTPUT Regression Statistics Multiple R 0.516369 R Square 0.266637 Adjusted R Square 0.256987 Standard Error 0.35314 Observations 78 ANOVA ...

Words: 684 - Pages: 3

Premium Essay

...electricity, property taxes, advertising, accounting, janitors, cleaning supplies, distribution costs, legal fees, interest, inspectors, human resources department, etc, etc, etc. Life would be too easy if it were just that simple. There is one wrinkle. There is a distinction between between overhead and manufacturing overhead. Factory Overhead is not a financial statement account It is a “suspense account” for capturing and reallocating overhead costs Factory Overhead is debited for actual overhead costs incurred Factory Overhead is credited to allocate overhead to production Regression Analysis Interpretation of output summary The regression model like that, Here, Y= Cost of production A= Constant b1,b2 &b3= Regression coefficient X1= Direct Materials X2 = Direct Labor X3= Factory overhead From the co-efficient table, the values of a, b1,b2& b3 are found out & the regression model can be written as follows: Y= a+b1x1+b2x2+b3x3 = -6537089.828+.248×1+38.489×2+12.326×3 This equation indicates that if taka of direct materials increases by 1taka, the cost production will increases by .248 taka and other things remain constant. Again, if taka of direct labor increases by 1 taka, the cost of production will increases by 38.489 taka and other things remain constant. On the other hand, if taka of factory overhead increases by 1taka, the cost of production will increases by 12.326 taka and other things remain constant. The relationship among......

Words: 578 - Pages: 3

Premium Essay

...Introduction to Multiple Regression Dale E. Berger Claremont Graduate University http://wise.cgu.edu Overview Multiple regression is a flexible method of data analysis that may be appropriate whenever a quantitative variable (the dependent or criterion variable) is to be examined in relationship to any other factors (expressed as independent or predictor variables). Relationships may be nonlinear, independent variables may be quantitative or qualitative, and one can examine the effects of a single variable or multiple variables with or without the effects of other variables taken into account (Cohen, Cohen, West, & Aiken, 2003). Multiple Regression Models and Significance Tests Many practical questions involve the relationship between a dependent or criterion variable of interest (call it Y) and a set of k independent variables or potential predictor variables (call them X1, X2, X3,..., Xk), where the scores on all variables are measured for N cases. For example, you might be interested in predicting performance on a job (Y) using information on years of experience (X1), performance in a training program (X2), and performance on an aptitude test (X3). A multiple regression equation for predicting Y can be expressed a follows: (1) [pic] To apply the equation, each Xj score for an individual case is multiplied by the corresponding Bj value, the products are added together, and the constant A is added to......

Words: 1415 - Pages: 6

Premium Essay

...Ben Leigh American Intercontinental University Unit 5 Individual Project BUSN311-1301B-10: Quantitative Methods and Analysis Instructor Leonidas Murembya April 23, 2013, Abstract This paper will be discussing regression analysis using AIU’s survey responses from the AIU data set in order to complete a regression analysis for benefits & intrinsic, benefits & extrinsic and benefit and overall job satisfaction. Plus giving an overview of these regressions along with what it would mean to a manager (AIU Online). Introduction Regression analysis can help us predict how the needs of a company are changing and where the greatest need will be. That allows companies to hire employees they need before they are needed so they are not caught in a lurch. Our regression analysis looks at comparing two factors only, an independent variable and dependent variable (Murembya, 2013). Benefits and Intrinsic Job Satisfaction Regression output from Excel SUMMARY OUTPUT Regression Statistics Multiple R 0.018314784 R Square 0.000335431 The portion of the relations explained Adjusted R Square -0.009865228 by the line 0.00033% of relation is Standard Error 1.197079687 Linear. Observations 100 ANOVA df SS MS F Significance F Regression 1 0.04712176 0.047122 0.032883 0.856477174 Residual 98 140.4339782 1.433 Total 99 140.4811 Coefficients Standard Error t......

Words: 830 - Pages: 4

Free Essay

...Performance”, Lisbon, October 1998. *Corresponding author: IZA, P.O. Box 7240, 53072 Bonn, Germany; winkelmann@iza.org. “I know only of three ways of living in society: one must be a beggar, a thief, or a wage earner.” HONORÉ de MIRABEAU (1749-1791) 1. Introduction It is a common observation for many countries that unemployment rates and crime rates are positively associated. A more contentious issue is whether this association means that unemployment causes crime, crime causes unemployment or third factors cause both. Only the first of the three possibilities would imply that the effects of unemployment on crime deserve to be counted among the “non-pecuniary” costs of unemployment that should be taken into account in a cost-benefit analysis of potential unemployment-reducing policies. The theoretical underpinning of the causality notion was developed some thirty years ago by Becker (1968), Stigler (1970) and Ehrlich (1973), among others. In Ehrlich’s model, individuals divide their time between legal activities and risky illegal activities. If legal income opportunities become scarce relative to potential gains from crime, the model predicts that crime will become more frequent. Increased unemployment could be one such factor. Numerous subsequent empirical papers have attempted to test the predictions of the BeckerEhrlich model and to find out whether the magnitude of the unemployment effect is quantitatively important. The hallmark of this literature is its failure......

Words: 6399 - Pages: 26

Premium Essay

...MULTIPLE REGRESSION After completing this chapter, you should be able to: understand model building using multiple regression analysis apply multiple regression analysis to business decision-making situations analyze and interpret the computer output for a multiple regression model test the significance of the independent variables in a multiple regression model use variable transformations to model nonlinear relationships recognize potential problems in multiple regression analysis and take the steps to correct the problems. incorporate qualitative variables into the regression model by using dummy variables. Multiple Regression Assumptions The errors are normally distributed The mean of the errors is zero Errors have a constant variance The model errors are independent Model Specification Decide what you want to do and select the dependent variable Determine the potential independent variables for your model Gather sample data (observations) for all variables The Correlation Matrix Correlation between the dependent variable and selected independent variables can be found using Excel: Tools / Data Analysis… / Correlation Can check for statistical significance of correlation with a t test Example A distributor of frozen desert pies wants to evaluate factors thought to influence demand Dependent variable: Pie sales (units per......

Words: 1561 - Pages: 7

Premium Essay

...In multiple linear regression analysis, R2 is a measure of the ________. A) homoskedasticity of the predictors B) misclassification rate C) percentage of the variance of the dependent variable that is explained by the set of independent (predictor) variables D) precision of the resulting model when applied to the validation data 2. Categorical variables can be used in a multiple linear regression model _________. A) by partitioning of the dataset B) when no multicollinearity among the independent variables is present C) when the sample size is at least 10 times that of the number of variables D) through the use of dummy variables 3. In multiple linear regression analysis “multicollinearity” refers to _________. A) two or more predictors sharing the same linear relationship with the outcome variable B) a high degree of correlation between the dependent variables C) the equality of the variance of the dependent throughout its range of values D) None of the above. 4. In multiple regression analysis, which of the following is an example of a subset selection algorithm? A) Forward selection B) Backwards elimination C) Stepwise regression D) All of the above 5. _________ is an important property of a good model. A) Complexity B) Independence C) Parsimony D) None of the bove 6. An assumption that applies to the linear multiple regression method is that the distribution of the error term values should be ________. A)......

Words: 460 - Pages: 2

Premium Essay

...Acts 430 Regression Analysis In this project, we are required to forecast number of houses sold in the United States by creating a regression analysis using the SAS program. We initially find out the dependent variable which known as HSN1F. 30-yr conventional Mortgage rate, real import of good and money stock, these three different kinds of data we considered as independent variables, which can be seen as the factors will impact the market of house sold in USA. Intuitively, we thought 30-yr conventional mortgage rate is a significant factor that will influences our behavior in house sold market, which has a negative relation with number of house sold. When mortgage rate increases, which means people are paying relatively more to buy a house, which will leads to a decrease tendency in house sold market. By contrast, a lower interest rate would impulse the market. We believe that real import good and service is another factor that will causes up and down in house sold market. When a large amount of goods and services imported by a country, that means we give out a lot of money to other country. In other words, people have less money, the sales of houses decreased. Otherwise, less import of goods and services indicates an increase tendency in house sold market. We can see it also has a negative relationship with the number of house sold. Lastly, we have money stock as our third impact factor of house sold. We considered it has a positive relationship with the number of...

Words: 723 - Pages: 3

Premium Essay

...Regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables. More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. Local Government Engineering Department (LGED) is a public sector organization under the ministry of Local Government, Rural Development & Cooperatives. The prime mandate of LGED is to plan, develop and maintain local level rural, urban and small scale water resources infrastructure throughout the country. Here, I considered LGED as the organization and considering a projects eight districts “available fund” as Independent variable and “development (length of development of road in km)” as dependent variable. The value of the variables are- Districts Fund, X (lakh tk) Development,Y (km) Panchagar 450 10 Thakurgaon 310 6.8 Dinajpur 1500 32 Nilphamari 1160 24.5 Rangpur 1450 31 Kurigram 450 9 Lalmonirhat 950 16 Gaibandha 1550 33 For the two variables “available fund” and “development”, the regression equation can be given as: Y= a + bX Where, Y = Development X = Fund b = rate of change of development a...

Words: 365 - Pages: 2

Premium Essay

...------------------------------------------------- india Will Be The Great Power by 2035 Spiritually Economically Militarily.Indian Economy Will Have Slowdown in 2011 With its GDP Growth Reaching 8.0% .Great Scientific Discoveries will be made by Indians Throughout the world. It will become one of the Richest Countries of The world. India's Great Sanatana Dharma, Yoga, Spirituality, Popularity Will Soar Worldwide.Inflation & Interest Rates Will Continue to be High In 2011 in India & government of india will lie to its people by manipulating Statistics.Stock Markets Will Touch New Heights But will Decline in middle of 2011.Gold and Silver prices will also Rise.Crime Will Soar In India 2011, Prostitution & Drug Peddling and Mafia will flourish under the goverment protection. Primeminister will be weak and goverment dishonest & shameless. Despite a recession at the beginning of the century, developing countries have posted healthy economic growth rates over the last 15 years. These growth rates were maintained despite the ageing of the population in the developed world by harnessing energies of younger people in developing economies. The economic prosperity has also resulted in the global tourism industry registering strong growth. Realising the potential size of the opportunity in 2002, India put in place initiatives to tap it despite the uncertainty associated with the future. As part of its plan, India Inc. positioned its brand as a credible and......

Words: 374 - Pages: 2

Premium Essay

... Case Study: Locating New Pam and Susan‘s Stores Professor Demetra Paparounas Lisa Chan MGSC 6200- Information Analysis July 3, 2014 Introduction The purpose of this study to is to determine a new store location for Pam and Susan Stores. This discount department store chain has 250 stores that are primarily in the South. Expansion is important to their strategic success. A multiple regression model will be used to determine which location has the highest sales potential and projections. It will also be used to help see how strong of a relationship sales has to the other independent variables. Data For this model, the wealth of census data that was used to compute this model contained 250 observations, 33 variables and 7 additional dummy variables were created from the main comtype variable, taking values of zero or one depending on level of competitiveness for a particular store. This data set contained economic and demographical data, population type, sales numbers, store size and the competitive types. The amount of sales and selling square feet variables are given in thousands of dollars. Results and Discussions In analyzing the data on the 250 Pam and Susan’s stores, we first created a scatter plot of the competitive types in the horizontal axis against sales (in thousands) on the vertical axis. The competitive types were identified as follows: * Type 1- Densely populated area with relatively little direct competition. * Type 2 –High income areas with little......

Words: 1892 - Pages: 8

Premium Essay

...ANALYSIS OF REGRESSION Jessica Cain American InterContinental University Abstract The world today uses statistics in many different ways to understand numbers and possible outcomes. One way that this is by using regression analysis. The regression analysis which is based on a correlation between two variables can help us to better understand the relationship between the two variables. The process which is a valuable one has helped researchers, and businesses to grow based on information obtained from a regression analysis that contains a linear regression. Introduction The purpose of a regression analysis is to help show a linear regression of certain variables. This helps to understand the correlation of the variables being tested. Correlation does give reason to suspect that the relationship between two variables is not die to chance or other hidden variables (Editorial Board, [EB], 2012). This is done by utilizing excel to show how the variables match up, and if one is causing the other or if there are outliers that are affecting the outcome. This is important as it will allow for a company to see and eliminate these unnecessary variables and continue their growth. Benefits and Intrinsic Job Satisfaction Regression output from Excel |SUMMARY OUTPUT | | | | | |Intrinsic |-0.08484 |4.844477 ......

Words: 589 - Pages: 3

Premium Essay

...Project Title: A STATISTICAL ANAYLYSIS OF NBA PLAYER SALARIES USING A MULTIPLE REGRESSION. ABSTRACT Basketball is one of the most popular sports in the world and National Basketball Association (NBA) is the most popular basketball league in the world. The NBA league is based on the United States of America and it consists of 30 teams. The NBA is so popular that the NBA finals are the 2nd most watched televised event in the U.S. after the NFL (National Football League) Super Bowl. Sometimes when we think about NBA players and the enormous amount of money they are making, we become a little jealous. It is well known about how some star players make so much money or are over-paid and yet can hardly form a sentence. The greatest challenge for the board of NBA has been how to harmonize the salaries. Due to this various people have tried to come up with different solutions .Some argue that height ,weight and physical strength play a big role in team winning but this is not the case as some players who are short help their teams win in several occasions. To solve this problem a multiple regression analysis will be utilized to analyze the salary data. A relationship will be established between the salary and performance variables. The other challenge will be choosing the model parameters that will be significant in order to be included in the model that will be developed. This can be solved by arranging the factors affecting an NBA player salary in a decreasing order of......

Words: 1819 - Pages: 8

Premium Essay

... | LETTER OF TRANSMITTAL April 12, 2012 Dr. Abul Kalam Azad Associate Professor Department of Marketing University Of Dhaka Subject: Submission of a Report on regression analysis Dear Sir, Here is our term paper on regression analysis that you have assigned us to submit as a partial requirement for the course –“Business Statistics 1” Code no-212.While preparing this term paper; we have taken help from internet, books, class lectures and relevant sources. Though we have tried best yet it may contain some unintentional errors. We hope, this term paper will come up with your expectation. We shall be glad to answer any kind of question related to this term paper and we shall be glad to provide further clarification if needed. Yours faithfully Group: ''Oracles'' Section: B 17thBatch, Department Of Marketing University of Dhaka. ACKNOWLEDGEMENT For the completion of this task, we can’t deserve all praise. There were a lot of people who helped us by providing valuable information, advice and guidance. Course report is an important part of BBA program as one can gather practical knowledge within the short period of time by observing and doing this type of task. In this regard our report has been prepared on ‘regression analyses. At first we would like to thank Almighty .Then to our course teacher for giving us the assignment helping the course as well as for his valuable guidelines. Last but not the least the......

Words: 1445 - Pages: 6

Free Essay

...Unit 5 – Regression Analysis Jessica Laux/Bakos American InterContinental University Abstract Data regression and charting are important parts of interpreting data. If one uses scatter plots, and data analysis, one can determine if a correlation exists between two data sets, or if there is actually very little. This can help when it comes to seeing for example, if job satisfaction overall is related to benefits, and if so how to change that in the favor of the business. Introduction In the following information, we will show regression outputs for data sets from the AIU data set. We will determine correlation and what it means, as well as show scatter graphs that can help determine if there is any correlation to be shown. One has to be careful to input the proper data if they want the analysis to come out correctly. Benefits and Intrinsic Job Satisfaction Regression output from Excel |SUMMARY OUTPUT | | | | | |Intrinsic |0.326704508 |3.438142011 |Y=0.0034x+4.5491 |0.0012 | |Extrinsic |-0.134516538 |6.034361553 |Y=1.6912x+13.859 |0.2275 | |Overall |0.101037811 |4.712869316 |Y=1.0105x+0.5195 |0.1021 | Similarities and......

Words: 322 - Pages: 2