Premium Essay

Matrices

In: Science

Submitted By eliwhiz
Words 4781
Pages 20
PROPERTIES OF MATRICES
INDEX
adjoint.......................4, 5 algebraic multiplicity .....7 augmented matrix.........3 basis.........................3, 7 cofactor ........................4 coordinate vector ..........9 Cramer's rule................1 determinant...............2, 5 diagonal matrix .............6 diagonalizable...............8 dimension .....................6 dot product ...................8 eigenbasis ....................7 eigenspace...................7 eigenvalue ....................7 eigenvector...................7 geometric multiplicity....7 identity matrix ...............4 image ...........................6 inner product................9 inverse matrix...............5 inverse transformation..4 invertible.......................4 isomorphism.................4 kernal ...........................6 Laplace expansion by minors .....................8 linear independence.....6 linear transformation.....4 lower triangular.............6 norm .......................... 10 nullity............................ 8 orthogonal ................ 7, 9 orthogonal diagonalization ................................ 8 orthogonal projection.... 7 orthonormal.................. 7 orthonormal basis ........ 7 pivot columns............... 7 quadratic form.............. 9 rank.............................. 3 reduced row echelon form ................................ 3 reflection ...................... 8 row operations ............. 3 rref ................................3 similarity .......................8 simultaneous equations 1 singular.........................8 skew-symmetric............6 span .............................6 square ..........................2 submatrices ..................8 symmetric matrix ..........6 trace .............................7 transpose..................5, 6

BASIC OPERATIONS - addition, subtraction, multiplication

For example purposes, let…...

Similar Documents

Free Essay

Market Yourself

...d’un tableau croisant 13 variables avec 50 observations (échantillon supposé aléatoire), Pour les variables financières, on peut aprioris distinguer 3 groupes. La trésorerie, services de banque et épargne. Les 2 dernières variables sont socio économiques. Q1 : Faisabilité et pertinence. Le déterminant est proche de 0 sans être nul. Il est ok. Test de sphéricité de Les 3 indicateurs de faisabilité montrent que l’on est en présence d’une matrice de données propres. Matrice des composantes : La matrice des composantes devrait comporter 11 colonnes. Le logiciel a déjà sélectionner (méthode de KAISER), les facteurs les plus opportuns. Matrice reconstituée : La matrice des composantes montre que l’outil réduit la dimension du problème (8 variables se résument à 3 facteurs). On constate sur la matrice reconstituée 40% de résidus significatif ce qui est un peu supérieur aux 30% standards. Légère altération des cartes, quant à la représentation de la nature des liaisons entre les variables. Conclusion : Matrice propre et un outil qui semble pertinent d’un point de vue théorique....

Words: 630 - Pages: 3

Free Essay

P Arithmetics

...why such methods work. This type of algorithm is used in all professional software for general eigenvalue calculations today, such as MATLAB's eig function. Prerequisite: Sections 5.2 and 6.4 MATLAB functions used: qr, *, eye, :, tic, toc , for, eig qreigdat, qrbasic, qrshift and randint from Lay's Toolbox Part I. Background. It is not easy to calculate eigenvalues for most matrices. Characteristic polynomials are difficult to compute. Even if you know the characteristic polynomial, algorithms such as Newton's method for finding zeros cannot be depended upon to produce all the zeros with reasonable speed and accuracy. Fortunately, numerical analysts have found an entirely different way to calculate eigenvalues of a matrix A, using the fact that any matrix similar to A has the same eigenvalues. The idea is to create a sequence of matrices similar to A which converges to an upper triangular matrix; if this can be done then the diagonal entries of the limit matrix are the eigenvalues of A. The remarkable discoveries are that the method can be done with great accuracy, and it will converge for almost all matrices. In practice the limit matrix is just block upper triangular, not truly triangular (because only real arithmetic is done), but it is still easy to get the eigenvalues from that. See Note 2 below. The primary reason that modern implementations of this method are efficient and reliable is that a QR factorization can be used to create each new matrix in the sequence. Each......

Words: 2445 - Pages: 10

Premium Essay

Matrices

...PROPERTIES OF MATRICES INDEX adjoint.......................4, 5 algebraic multiplicity .....7 augmented matrix.........3 basis.........................3, 7 cofactor ........................4 coordinate vector ..........9 Cramer's rule................1 determinant...............2, 5 diagonal matrix .............6 diagonalizable...............8 dimension .....................6 dot product ...................8 eigenbasis ....................7 eigenspace...................7 eigenvalue ....................7 eigenvector...................7 geometric multiplicity....7 identity matrix ...............4 image ...........................6 inner product................9 inverse matrix...............5 inverse transformation..4 invertible.......................4 isomorphism.................4 kernal ...........................6 Laplace expansion by minors .....................8 linear independence.....6 linear transformation.....4 lower triangular.............6 norm .......................... 10 nullity............................ 8 orthogonal ................ 7, 9 orthogonal diagonalization ................................ 8 orthogonal projection.... 7 orthonormal.................. 7 orthonormal basis ........ 7 pivot columns............... 7 quadratic form.............. 9 rank.............................. 3 reduced row echelon form ................................ 3 reflection ...................... 8 row operations ............. 3 rref ................................3 similarity .......

Words: 4781 - Pages: 20

Premium Essay

Orthogonal Matrices

...Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ e~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ ¢ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ ¢ Knowledge Kkue~ Kku Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æ ∆ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge K u Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾Hœ O Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~~ u Kkue~~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛkk«Ú ¾HHœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~~ O Kkue~~ Kku g g ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ O O e~ Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ _ Knowledge Kkue~ Kku Kkue~ Kku ‹≈‰’≈∆ :±ò º°æfi»¢ :±ò Kku iëëÞ eÛk«Ú ¾HœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ O Kkue~ Kku ‹≈‰’≈∆ :±ò º°æ fi» :±ò Kku iëëÞ eÛk«Ú ¾HHœÈä¢ Oã]¶ sÐ_ :±ò Kku Knowledge Kkue~ O Kkue~ Kku ‹≈‰’≈∆ :±ò......

Words: 32271 - Pages: 130

Free Essay

Matrices and Its Application

...Term Paper On Matrices and its Application | Chapter-01: Introduction | 1-3 | 1.1 Background of the Study | 1 | 1.2 Origin of the Study | 2 | 1.3 Objective of the Study | 2 | 1.4 Methodology of the Study | 3 | 1.5 Scope and Limitation of the Study | 3 | Chapter-02: Theoretical Overview | 4-8 | 2.1 Definition of Matrix | 4 | 2.2 Matrix Notation | 4 | 2.3 History of Matrix | 5 | 2.4 Types of Matrix | 6 | 2.4.1 Row Matrix | 6 | 2.4.2 Column Matrix | 6 | 2.4.3 Rectangular Matrix | 6 | 2.4.4 Square Matrix | 6 | 2.4.5 Zero Matrix | 7 | 2.4.6 Upper Triangular Matrix | 7 | 2.4.7 Lower Triangular Matrix | 7 | 2.4.8 Diagonal Matrix | 7 | 2.4.9 Scalar Matrix | 7 | 2.4.10 Identity Matrix | 8 | 2.4.11 Transpose Matrix | 8 | 2.4.12 Regular Matrix | 8 | 2.4.13 Singular Matrix | 8 | Chapter-03: Matrices Operation | 9-15 | 3.1. Properties of matrix operation | 9 | 3.1.1 Properties of subtraction | 9 | 3. 1.2 Properties of Addition | 9 | 3.1.3 Properties of Matrix Multiplication | 10 | 3.1.4 Properties of Scalar Multiplication | 10 | 3.1.5 Properties of the Transpose of a Matrix | 10 | 3.2 Matrix Operation | 11 | 3.2.1 Matrix Equality | 12 | 3.2.2 Matrix Addition | 12 | 3.2.3 Matrix Subtraction | 12 | 3.2.4 Matrix Multiplication | 12 | 3.2.5 Multiplication of Vectors | 14 | 3.3 Inverse of Matrix | 15 | 3.4 Elementary Operations | 15 | Chapter-04: Application of Matrix | 16-21 | 4...

Words: 6438 - Pages: 26

Premium Essay

Vespa Pshycometric

...the British Psychological Society’s (BPS) which provides information about which tests are fit for purpose. Finally, it's essential that test use is restricted to those who are suitably qualified. This avoids potential incompetence and misuse, and ensures that the test Results are correctly interpreted. Where do these tests add real value? Psychometrics can add real value across numerous applications including: • Recruitment decisions • Team building • Career counselling • Training and development • Understanding organizational culture. 1. PSYCHOMETRIC TOOLS USED AT VESPA There are two main Psychometric tools Piaggio Vespa Pvt. Ltd. Uses to assess its candidates which are listed below: a) Predictive Index (PI) b) Raven Matrices 2.1. PREDICTIVE INDEX Piaggio Vespa uses Predictive Index (PI) to assess its Sales work force. The Predictive Index (PI) is a theory-based, self-report measurement of normal, adult, work-related personality that has been developed and validated for use within occupational and organizational populations. The PI is used for a variety of personnel management purposes, including employee selection, executive on-boarding, leadership development, succession planning, performance coaching, team-building and organizational culture change, among others. The test employs a free-choice (as opposed to forced-choice) response format, in which individuals are presented with two lists of descriptive adjectives, both......

Words: 1154 - Pages: 5

Free Essay

A Note on Positive Semi-Definiteness of Some Non-Pearsonian Correlation Matrices

...A Note on Positive Semi-definiteness of Some Non-Pearsonian Correlation Matrices SK Mishra Department of Economics North-Eastern Hill University Shillong, Meghalaya (India) mishrasknehu@yahoo.com I. Introduction: A correlation matrix, ℜ , is a real and symmetric m × m matrix such that − 1 ≤ rij ∈ ℜ ≤ 1; i, j = 1,2, ... , m. Moreover, rii = 1. The Pearsonian (or the product moment) correlation coefficient, e.g. r12 (between two variates, say x1 and x 2 , each in n observations), is given by the formula: r ( x1 , x2 ) = cov(x1 , x2 ) / var(x1 ) ⋅ var(x2 ) … (1) 1 n 1 n 2 where, x a = ∑k =1 x ka ; cov( x1 , x 2 ) = ∑k =1 x k 1 x k 2 − x12 x 2 and var( xa ) = cov( xa , xa ); a = 1, 2. n n A little of algebra also gives us the identity: r ( x1 , x2 ) = (1 / 4) [var(x1 + x2 ) − var(x1 − x2 )] var(x1 ) ⋅ var(x 2 ) … (2). The Pearsonian correlation matrix is necessarily a positive semi-definite matrix (meaning that all its eigenvalues are non-negative) since it is the quadratic form of a real matrix, X ( n, m ). It also implies that if ℜ is not a positive semi-definite matrix, then X ( n, m) is not a real matrix. II. Robust Measures of Correlation: The Pearsonian coefficient of correlation as a measure of association between two variates is highly prone to the deleterious effects of outlier observations (data). Statisticians have proposed a number of formulas, other than the one that obtains Pearson’s coefficient of correlation, that are considered to......

Words: 2648 - Pages: 11

Free Essay

Files

...Addition of Matrices Denote the sum of two matrices A and B (of the same dimensions) by C = A + B.. The sum is defined by adding entries with the same indices [pic] over all i and j. Example: [pic] Subtraction of Matrices Subtraction is performed in analogous way. Example: [pic] Scalar multiplication To multiply a matrix with a real number, we multiply each element with this number. Example: [pic] Multiplication of a row vector by a column vector This multiplication is only possible if the row vector and the column vector have the same number of elements. To multiply the row by the column, one multiplies corresponding elements, then adds the results. Example: [pic] If the row vector and the column vector are not of the same length, their product is not defined. Example: [pic] The Product of a Row Vector and Matrix When the number of elements in row vector is the same as the number of rows in the second matrix then this matrix multiplication can be performed. Example: [pic] If the number of elements in row vector is NOT the same as the number of rows in the second matrix then their product is not defined. Example: [pic] Linear programming (LP; also called linear optimization) is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (mathematical optimization). More......

Words: 1244 - Pages: 5

Free Essay

Matrices

... West Spring Secondary School 2011 4E EM Assignment 12: Matrices Name: ________________________ ( ) Class: __________ Date: _________ This worksheet covers the following: 1. Application of Matrices Application of Matrices to Word Problems 1. Three shops, Shop X, Shop Y and Shop Z buy four flavours of donuts from a donut factory.  The cost of the four flavours of donuts and the quantity ordered by the three shops are shown below:    |Donut Flavours |Chocolate |Strawberry |Mint |Vanilla | |Cost Per Dozen |$4.80 |$4.50 |$5.00 |$4.20 |   | |Quantity in Dozens Bought  Per Week | |Shops |Chocolate |Strawberry |Mint |Vanilla | |X |60 |40 |80 |50 | |Y |70 |50 |90 |60 | |Z |80 |30 |100 |50 |   a) Write down, C, a [pic] matrix for the cost per dozen of the different flavoured donuts. b) Write down another matrix D, such that the matrix multiplication, CD, gives the amount each shop spends on purchasing the donuts in one week. c) Work out the matrix multiplication CD and state the amount spent per week on donuts by the three shops. 2. A body care company packs three different types of gift hampers, A, B and C.  The table below gives the contents of each type......

Words: 1626 - Pages: 7

Free Essay

Feasibility of Using Biosensors for Heavy Metal Detection in Complex Matrices Such as Bio-Slurries.

...Maria Vasilenko 223901 Feasibility of using biosensors for heavy metal detection in complex matrices such as bio-slurries. Master of Science Thesis Examiners: Professor Matti Karp Professor Raghida Lepistö Examiner and topic approved in The Science and Bioengineering Department Council meeting on 7.11.2012 Abstract TAMPERE UNIVERSITY OF TECHNOLOGY Master‟s Degree Programme in Science and Bioengineering Vasilenko Maria: Feasibility of using biosensors for heavy metal detection in complex matrices such as bio-slurries. Seminar paper, 97 pages November 2012 Major: Biotechnology Examiners: Matti Karp, Raghida Lepisto Keywords: environmental pollution, heavy metals, biosensors, slurries The quality of bioslurries that are used in industrial production and agriculture need to be watched very closely to avoid spreading of contaminants on area and poisoning of humans and animals. Because heavy metals are very stable and toxic in many chemical compositions, their amount should be estimated very thoroughly. A new approach that involved biosensors was tested in this study. Because the slurries are complex non-unified matrices which composed of two phases – solid and liquid, the cell behavior can varies a lot from the one that explained in water and so the estimation of ion concentration can be not reliable. It was shown that the cell actually behave different in the slurries. Normally the dissolved compounds suppress the biosensor activity and, in the same time, the ions in......

Words: 17229 - Pages: 69

Free Essay

Matrices

...III. Matrices Definition III.1 An m × n matrix is a set of numbers arranged in a rectangular array having m rows and n columns. It is written   A11 A12 · · · A1n  A21 A22 · · · A12  A= . . .  ..  . . .  . . . . Am1 Am2 · · · Amn There are two important special cases. A 1 × n matrix (that is, a matrix with 1 row) is called a row vector. An m × 1 matrix (that is, a matrix with 1 column) is called a column vector. Our convention will be that row indices are always written before column indices. As a memory aid, I think of matrices as being RC (Roman Catholic or rows before columns). §III.1. Matrix Operations Definitions 1. Equality. For any two matrices A and B A = B ⇐⇒ (a) A and B have the same number of rows and the same number of columns and (b) Aij = Bij for all i, j 2. Addition. For any two m × n matrices A and B (A + B)ij = Aij + Bij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n That is, the entry in row i, column j of the matrix A + B is defined to be the sum of the corresponding entries in A and B. Note: The sum A + B is only defined if A and B have the same number of rows and the same number of columns. 3. Scalar multiplication. For any number s and any m × n matrix A (sA)ij = sAij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n For example 2 1 0 2 0 + 3 1 1 2×1+0 = 1 2×0+1 2×2+1 2 = 2×3+1 1 5 7 4. Matrix multiplication. For any m × p matrix A and any p × n matrix B p (AB)ik = j=1 Aij Bjk for all 1 ≤ i ≤ m, 1 ≤ k ≤......

Words: 20391 - Pages: 82

Premium Essay

Maths for Business and Economics Notes

...Topic 1 Linear Algebra Outline 1. 2. 3. 4. 5. 6. 7. 8. 9. Matrix operations Special matrices Inverse of a square matrix System of linear equations Determinant of a square matrix Partitioned matrices (block matrices) Linear independence of vectors and dimension Eigenvalues and Eigenvectors  Positive (negative) definite matrix 2 What is a matrix? • A matrix is a two dimensional rectangular array of numbers.  a11 a12  a1n  a a22  a2 n   A   21        am1 am 2  amn   • • • • • We say that the dimension (or size) of  is  , denoted  ∈ If  , then  is a square matrix   If  1, the  1 matrix is called a column ( dimensional) vector   If  1, the 1 matrix is called a row ( dimensional) vector   If  1,  is just a number, called scalar 3 1. Matrix operations iff dim dim and  • Equality:   • Addition and subtraction: if dim dim + while  has a typical element  • Example:  Let  for all  and  2 2 2 1 3 ,  1 9 0 2 9 ,  14 1 • Scalar multiplication: For a scalar  ,  • Example: Let  2 1 1 9 0 3 , then  . 1 5 2 4 has a typical element  6 , then 1 0 3 4 1 has typical element  3 , then 3 0 6 3 3 27 . 9 0 4 Transpose of a matrix: • For an  that the  , matrix  , the transpose  ′ (or  ) is defined as an  element of  ′ is equal the  , element of   a11 a12  a1n  ......

Words: 6927 - Pages: 28

Free Essay

Inventory

...Total Marks = 100 Write, execute and test a C++ program that performs the following operations on two i*j matrices. . a) Multiplication: Multiply two matrices. . b) Copy: Copy one matrix into another, if both matrices are of same size. Input: (2+2+2=6Marks) Following are the inputs (from keyboard) of this program: . a) Input size of matrix A and values of its elements. . b) Input size of matrix B and values of its elements. . c) Input type of operation to be performed i.e. Multiplication, Copy and Quit. Output: (10+4+10 = 24 Marks) Following are the outputs of this program: . a) Display both matrices. . b) Display list of operation: Enter 1 for Multiplication Enter 2 for Copy Enter ! for exit . c) Display the result of selected operation. Processing: (10+10+5 = 25 Marks) . a) The program first prompts a user to enter size of Matrix A and its values. . b) The program then prompts a user to enter size of Matrix B and its values. . c) The program displays both matrices, with a list of operations can be performed. . d) A user selects an operation to be performed. 1. Multiplication operation (10 Marks) 2. Copy operation (10 Marks) . e) The result of selected operation is displayed. . f) If any of the operations cannot be performed, then program generates error message. . g) The program runs until user enters "!" to exit the program. (5 Marks) Testing: (10+10 =...

Words: 402 - Pages: 2

Free Essay

Computer Introduction

...quello di imparare a maneggiare le matrici, questa sezioe ne mostra come fare . Una matrice ` in MATLAB, un ordine rettangolare di numeri,significato speciale e qualche volta ` adottato per le 1 − by − 1 matrici che sono scalari, e per matrici con solamente una e riga o colonna che sono vettori. MATLAB ha altri modi di immagazzinare dati numerici e dati non numerici, ma all’inizio, di solito ` meglio pensare a tutto come una matrice. Le operazioni in MATLAB e sono destinate ad essere pi` naturali possibile. Dove gli altri linguaggi di programmazione lavorano u con numeri uno alla volta, MATLAB permette di lavorare facilmente e rapidamente con matrici di interi. Immettere le matrici Si possono registrare matrici in MATLAB in molti modi diversi. introdurre un elenco esplicito di elementi. caricare matrici da files di dati esterni. generare matrici utilizzando la funzione built-in. creare matrici con le proprie funzioni in M-files. Cominciamo a registrare la matrice come un elenco dei suoi elementi. Si seguano a tal proposito solamente alcune convenzioni di base: - Separare gli elementi di una riga con spazi vuoti o virgole. - Usare un punto e virgola ”;” per indicare la fine di ciascuna fila. - Racchiudere l’elenco intero di elementi con parentesi quadrate , [ ]. Per registrare la matrice di D¨rer, semplicemente digitare: u A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1] MATLAB espone a video solo la matrice digitata, A = 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1 Questo procedimento......

Words: 9607 - Pages: 39

Premium Essay

Berlin Wall

...interpretations. Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots. Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers. Logarithms and their properties. Permutations and combinations, Binomial theorem for a positive integral index, properties of binomial coefficients. Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables. Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations. Trigonometry: Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations. Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle......

Words: 631 - Pages: 3