Premium Essay

Courses on Probability Theory

In: Business and Management

Submitted By yanggaop
Words 1425
Pages 6
1.
Module Name: Introductory Econometrics
Code: P12205
Credits: 10
Semester: Spring 2011/12
Delivery: 16 one-hour lectures + 4 one-hour workshops
Aims:
The main aims of this module are: to introduce students to the principles, uses and interpretation of regression analysis most commonly employed in applied economics; to provide participants with sufficient knowledge of regression methods to critically evaluate and interpret empirical research.
On completion of this module students should be able to: demonstrate understanding of the assumptions and properties underlying regression analysis and the principle of ‘least squares’; interpret and manipulate the coefficients of multiple regression and performance criteria; conduct diagnostic checking of the validity of regression equations coefficients; appreciate the problems of misspecification, multicollinearity, heteroscedasticity and autocorrelation.
Content:
1. Simple Regression Analysis 2. Multiple Regression Analysis 3. Dummy Variables 4. Heteroscedasticity 5. Autocorrelation
Main Textbook: Dougherty, C. (2011). Introduction to Econometrics, 4th edition, Oxford.

2.
Module Name: Computational Finance
Code: P12614
Credits: 10
Semester: Spring 2011/12
Programme classes: 12 1-2 hour lectures/workshops
Aims:
The module aims to describe and analyse the general finance topics and introduces students to implement basic computational approaches to financial problems using Microsoft Excel. It stresses the fundamentals of finance; provides students with a knowledge and understanding on the key finance subjects such as money market, return metric, portfolio modelling, asset pricing, etc.; and equips students with the essential techniques applied in financial calculations.
Contents:
1. Lecture Topic 1: Money Market Instrument : Introduction to the course; Interest rate types;…...

Similar Documents

Premium Essay

Probability

... Probability – the chance that an uncertain event will occur (always between 0 and 1) Impossible Event – an event that has no chance of occurring (probability = 0) Certain Event – an event that is sure to occur (probability = 1) Assessing Probability probability of occurrence= probability of occurrence based on a combination of an individual’s past experience, personal opinion, and analysis of a particular situation Events Simple event An event described by a single characteristic Joint event An event described by two or more characteristics Complement of an event A , All events that are not part of event A The Sample Space is the collection of all possible events Simple Probability refers to the probability of a simple event. Joint Probability refers to the probability of an occurrence of two or more events. ex. P(Jan. and Wed.) Mutually exclusive events is the Events that cannot occur simultaneously Example: Randomly choosing a day from 2010 A = day in January; B = day in February Events A and B are mutually exclusive Collectively exhaustive events One of the events must occur the set of events covers the entire sample space Computing Joint and Marginal Probabilities The probability of a joint event, A and B: Computing a marginal (or simple) probability: Probability is the numerical measure of the likelihood that an event will occur The probability of any event must be between 0 and 1,...

Words: 553 - Pages: 3

Premium Essay

Probabilities

...Statistics 100A Homework 5 Solutions Ryan Rosario Chapter 5 1. Let X be a random variable with probability density function c(1 − x2 ) −1 < x < 1 0 otherwise ∞ f (x) = (a) What is the value of c? We know that for f (x) to be a probability distribution −∞ f (x)dx = 1. We integrate f (x) with respect to x, set the result equal to 1 and solve for c. 1 1 = −1 c(1 − x2 )dx cx − c x3 3 1 −1 = = = = c = Thus, c = 3 4 c c − −c + c− 3 3 2c −2c − 3 3 4c 3 3 4 . (b) What is the cumulative distribution function of X? We want to find F (x). To do that, integrate f (x) from the lower bound of the domain on which f (x) = 0 to x so we will get an expression in terms of x. x F (x) = −1 c(1 − x2 )dx cx − cx3 3 x −1 = But recall that c = 3 . 4 3 1 3 1 = x− x + 4 4 2 = 3 4 x− x3 3 + 2 3 −1 < x < 1 elsewhere 0 1 4. The probability density function of X, the lifetime of a certain type of electronic device (measured in hours), is given by, 10 x2 f (x) = (a) Find P (X > 20). 0 x > 10 x ≤ 10 There are two ways to solve this problem, and other problems like it. We note that the area we are interested in is bounded below by 20 and unbounded above. Thus, ∞ P (X > c) = c f (x)dx Unlike in the discrete case, there is not really an advantage to using the complement, but you can of course do so. We could consider P (X > c) = 1 − P (X < c), c P (X > c) = 1 − P (X < c) = 1 − −∞ f (x)dx P (X > 20) = 10 dx......

Words: 4895 - Pages: 20

Premium Essay

Probability

... Probability & Statistics for Engineers & Scientists This page intentionally left blank Probability & Statistics for Engineers & Scientists NINTH EDITION Ronald E. Walpole Roanoke College Raymond H. Myers Virginia Tech Sharon L. Myers Radford University Keying Ye University of Texas at San Antonio Prentice Hall Editor in Chief: Deirdre Lynch Acquisitions Editor: Christopher Cummings Executive Content Editor: Christine O’Brien Associate Editor: Christina Lepre Senior Managing Editor: Karen Wernholm Senior Production Project Manager: Tracy Patruno Design Manager: Andrea Nix Cover Designer: Heather Scott Digital Assets Manager: Marianne Groth Associate Media Producer: Vicki Dreyfus Marketing Manager: Alex Gay Marketing Assistant: Kathleen DeChavez Senior Author Support/Technology Specialist: Joe Vetere Rights and Permissions Advisor: Michael Joyce Senior Manufacturing Buyer: Carol Melville Production Coordination: Lifland et al. Bookmakers Composition: Keying Ye Cover photo: Marjory Dressler/Dressler Photo-Graphics Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Pearson was aware of a trademark claim, the designations have been printed in initial caps or all caps. Library of Congress Cataloging-in-Publication Data Probability & statistics for engineers & scientists/Ronald E. Walpole . . . [et al.] — 9th ed. p. cm. ISBN......

Words: 201669 - Pages: 807

Free Essay

First Course in Probability by Ross

...A Solution Manual for: A First Course In Probability: Seventh Edition by Sheldon M. Ross. John L. Weatherwax∗ September 4, 2007 Introduction Acknowledgements Special thanks to Vincent Frost and Andrew Jones for helping find and correct various typos in these solutions. Miscellaneous Problems The Crazy Passenger Problem The following is known as the “crazy passenger problem” and is stated as follows. A line of 100 airline passengers is waiting to board the plane. They each hold a ticket to one of the 100 seats on that flight. (For convenience, let’s say that the k-th passenger in line has a ticket for the seat number k.) Unfortunately, the first person in line is crazy, and will ignore the seat number on their ticket, picking a random seat to occupy. All the other passengers are quite normal, and will go to their proper seat unless it is already occupied. If it is occupied, they will then find a free seat to sit in, at random. What is the probability that the last (100th) person to board the plane will sit in their proper seat (#100)? If one tries to solve this problem with conditional probability it becomes very difficult. We begin by considering the following cases if the first passenger sits in seat number 1, then all ∗ wax@alum.mit.edu 1 the remaining passengers will be in their correct seats and certainly the #100’th will also. If he sits in the last seat #100, then certainly the last passenger cannot sit there (in fact he will end up in seat #1). If he sits in any of the......

Words: 60161 - Pages: 241

Premium Essay

Probability

...Probability, Mean and Median In the last section, we considered (probability) density functions. We went on to discuss their relationship with cumulative distribution functions. The goal of this section is to take a closer look at densities, introduce some common distributions and discuss the mean and median. Recall, we define probabilities as follows: Proportion of population for Area under the graph of   p ( x ) between a and b which x is between a and b  p( x)dx a b The cumulative distribution function gives the proportion of the population that has values below t. That is, t P (t )    p( x)dx  Proportion of population having values of x below t When answering some questions involving probabilities, both the density function and the cumulative distribution can be used, as the next example illustrates. Example 1: Consider the graph of the function p(x). p x  0.2 0.1 2 4 6 8 10 x Figure 1: The graph of the function p(x) a. Explain why the function is a probability density function. b. Use the graph to find P(X < 3) c. Use the graph to find P(3 § X § 8) 1 Solution: a. Recall, a function is a probability density function if the area under the curve is equal to 1 and all of the values of p(x) are non-negative. It is immediately clear that the values of p(x) are non-negative. To verify that the area under the curve is equal to 1, we recognize that the graph above can be viewed as a triangle. Its...

Words: 1914 - Pages: 8

Premium Essay

Solution Manual for a Course in Game Theory

...Solution Manual for A Course in Game Theory Solution Manual for A Course in Game Theory by Martin J. Osborne and Ariel Rubinstein Martin J. Osborne Ariel Rubinstein with the assistance of Wulong Gu The MIT Press Cambridge, Massachusetts London, England This manual was typeset by the authors, who are greatly indebted to Donald Knuth (the A creator of TEX), Leslie Lamport (the creator of L TEX), and Eberhard Mattes (the creator of emTEX) for generously putting superlative software in the public domain, and to Ed Sznyter for providing critical help with the macros we use to execute our numbering scheme. Version 1.1, 97/4/25 Contents Preface xi 2 Nash Equilibrium 1 Exercise 18.2 (First price auction ) 1 Exercise 18.3 (Second price auction ) 2 Exercise 18.5 (War of attrition ) 2 Exercise 19.1 (Location game ) 2 Exercise 20.2 (Necessity of conditions in Kakutani's theorem ) 4 Exercise 20.4 (Symmetric games ) 4 Exercise 24.1 (Increasing payo s in strictly competitive game ) 4 Exercise 27.2 (BoS with imperfect information ) 5 Exercise 28.1 (Exchange game ) 5 Exercise 28.2 (More information may hurt ) 6 Exercise 35.1 (Guess the average ) 7 Exercise 35.2 (Investment race ) 7 Exercise 36.1 (Guessing right ) 9 Exercise 36.2 (Air strike ) 9 Exercise 36.3 (Technical result on convex sets ) 10 Exercise 42.1 (Examples of Harsanyi's puri cation ) 10 Exercise 48.1 (Example of correlated equilibrium ) 11 Exercise 51.1 (Existence of ESS in 2 2 game ) 12......

Words: 27123 - Pages: 109

Free Essay

Probability

...Problem 1: Question 1. The probability of a case being appealed for each judge in Common Pleas Court. p(a) | 0.04511031 | 0.03529063 | 0.03497615 | 0.03070624 | 0.04047164 | 0.04019435 | 0.03990765 | 0.04427171 | 0.03883194 | 0.04085893 | 0.04033333 | 0.04344897 | 0.04524181 | 0.06282723 | 0.04043298 | 0.02848818 | Question 2. The probability of a case being reversed for each judge in Common Pleas Court. P® | 0.00395127 | 0.0029656 | 0.0063593 | 0.0035824 | 0.00223072 | 0.00795053 | 0.00725594 | 0.00675904 | 0.00434918 | 0.00477185 | 0.002 | 0.00404176 | 0.00561622 | 0.0104712 | 0.00413881 | 0.00194238 | Question 3. The probability of reversal given an appeal for each judge in Common Pleas Court. p(R/A) | 0.08759124 | 0.08403361 | 0.18181818 | 0.11666667 | 0.05511811 | 0.1978022 | 0.18181818 | 0.15267176 | 0.112 | 0.11678832 | 0.04958678 | 0.09302326 | 0.12413793 | 0.16666667 | 0.1023622 | 0.06818182 | Question 4. The probability of cases being appealed in Common Pleas Court. Probability of cases being appealed in common pleas court | 0.0400956 | Question 5. Identify the best judges in Common Pleas Court according to the three criteria in Questions 1-3: 1) The best judge in Common Pleas Court with the smallest probability in Question 1; Ralph Winkler 2) The best judge in Common Pleas Court with the smallest probability in Question 2; and ......

Words: 1093 - Pages: 5

Premium Essay

Probability

...Odd-Numbered End-of-Chapter Exercises * Chapter 2 Review of Probability 2.1. (a) Probability distribution function for Y Outcome (number of heads) | Y  0 | Y  1 | Y  2 | Probability | 0.25 | 0.50 | 0.25 | (b) Cumulative probability distribution function for Y Outcome (number of heads) | Y  0 | 0 Y  1 | 1 Y  2 | Y 2 | Probability | 0 | 0.25 | 0.75 | 1.0 | (c) . Using Key Concept 2.3: and so that 2.3. For the two new random variables and we have: (a) (b) (c) 2.5. Let X denote temperature in F and Y denote temperature in C. Recall that Y  0 when X  32 and Y 100 when X  212; this implies Using Key Concept 2.3, X  70oF implies that and X  7oF implies 2.7. Using obvious notation, thus and This implies (a) per year. (b) , so that Thus where the units are squared thousands of dollars per year. (c) so that and thousand dollars per year. (d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e (say e  0.80 Euros per dollar); each 1 dollar is therefore with e Euros. The mean is therefore e C (in units of thousands of Euros per year), and the standard deviation is e C (in units of thousands of Euros per year). The correlation is unit-free, and is unchanged. 2.9. | | Value of Y | Probability Distribution of X | | | 14 | 22 | 30 | 40 | 65 | | | Value......

Words: 11774 - Pages: 48

Premium Essay

Probability

...PROBABILITY ASSIGNMENT 1. The National Highway Traffic Safety Administration (NHTSA) conducted a survey to learn about how drivers throughout the US are using their seat belts. Sample data consistent with the NHTSA survey are as follows. (Data as on May, 2015) Driver using Seat Belt? | Region | Yes | No | Northeast | 148 | 52 | Midwest | 162 | 54 | South | 296 | 74 | West | 252 | 48 | Total | 858 | 228 | a. For the U.S., what is the probability that the driver is using a seat belt? b. The seat belt usage probability for a U.S. driver a year earlier was .75. NHTSA Chief had hoped for a 0.78 probability in 2015. Would he have been pleased with the 2003 survey results? c. What is the probability of seat belt usage by region of the Country? What region has the highest seat belt usage? d. What proportion of the drivers in the sample came from each region of the country? What region had the most drivers selected? 2. A company that manufactures toothpaste is studying five different package designs. Assuming that one design is just as likely to be selected by a consumer as any other design, what selection probability would you assign to each of the package designs? In an actual experiment, 100 consumers were asked to pick the design they preferred. The following data were obtained. Do the data confirm the belief that one design is just as likely to be selected as other? Explain. Design | Number of Times Preferred | 1 | 5 | 2 |......

Words: 1453 - Pages: 6

Premium Essay

Probability

...Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #07 Random Variables So, far we were discussing the laws of probability so, in the laws of the probability we have a random experiment, as a consequence of that we have a sample space, we consider a subset of the, we consider a class of subsets of the sample space which we call our event space or the events and then we define a probability function on that. Now, we consider various types of problems for example, calculating the probability of occurrence of a certain number in throwing of a die, probability of occurrence of certain card in a drain probability of various kinds of events. However, in most of the practical situations we may not be interested in the full physical description of the sample space or the events; rather we may be interested in certain numerical characteristic of the event, consider suppose I have ten instruments and they are operating for a certain amount of time, now after amount after working for a certain amount of time, we may like to know that, how many of them are actually working in a proper way and how many of them are not working properly. Now, if there are ten instruments, it may happen that seven of them are working properly and three of them are not working properly, at this stage we may not be interested in knowing the positions, suppose we are saying one instrument, two instruments and so, on tenth...

Words: 5830 - Pages: 24

Free Essay

Probability

... Title: The Probability that the Sum of two dice when thrown is equal to seven Purpose of Project * To carry out simple experiments to determine the probability that the sum of two dice when thrown is equal to seven. Variables * Independent- sum * Dependent- number of throws * Controlled- Cloth covered table top. Method of data collection 1. Two ordinary six-faced gaming dice was thrown 100 times using three different method which can be shown below. i. The dice was held in the palm of the hand and shaken around a few times before it was thrown onto a cloth covered table top. ii. The dice was placed into a Styrofoam cup and shaken around few times before it was thrown on a cloth covered table top. iii. The dice was placed into a glass and shaken around a few times before it was thrown onto a cloth covered table top. 2. All result was recoded and tabulated. 3. A probability tree was drawn. Presentation of Data Throw by hand Sum of two dice | Frequency | 23456789101112 | 4485161516121172 | Throw by Styrofoam cup Sum of two dice | Frequency | 23456789101112 | 2513112081481072 | Throw by Glass Sum of two dice | Frequency | 23456789101112 | 18910121214121174 | Sum oftwo dice | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total | Experiment1 | 4 | 4 | 8 | 5 | 16 | 15 | 16 | 12 | 11 | 7 | 2 | 100 | Experiment2 | 2 | 5 | 13 | 11 | 20 | 8 | 14 | 8 | 10 | 7 | 2 | 100 | Experiment3 | 1 | 8 | 9 | 10 | 12 | 12 | 13 | 12 |......

Words: 528 - Pages: 3

Free Essay

Probability

...CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials, the test has the following properties: 1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called “false negatives”). 2. When applied to a healthy person, the test comes up negative in 80% of cases, and positive in 20% (these are called “false positives”). Suppose that the incidence of the condition in the US population is 5%. When a random person is tested and the test comes up positive, what is the probability that the person actually has the condition? (Note that this is presumably not the same as the simple probability that a random person has the condition, which is 1 just 20 .) This is an example of a conditional probability: we are interested in the probability that a person has the condition (event A) given that he/she tests positive (event B). Let’s write this as Pr[A|B]. How should we define Pr[A|B]? Well, since event B is guaranteed to happen, we should look not at the whole sample space Ω , but at the smaller sample space consisting only of the sample points in B. What should the conditional probabilities of these sample points be? If they all simply inherit their probabilities from Ω , then the sum of these probabilities will be ∑ω ∈B Pr[ω ] = Pr[B],......

Words: 4220 - Pages: 17

Free Essay

Probability

...Probability XXXXXXXX MAT300 Professor XXXXXX Date Probability Probability is commonly applied to indicate an outlook of the mind with respect to some hypothesis whose facts are not yet sure. The scheme of concern is mainly of the frame “would a given incident happen?” the outlook of the mind is of the type “how sure is it that the incident would happen?” The surety we applied may be illustrated in form of numerical standards and this value ranges between 0 and 1; this is referred to as probability. The greater the probability of an incident, the greater the surety that the incident will take place. Therefore, probability in a used perspective is a measure of the likeliness, which a random incident takes place (Olofsson, 2005). The idea has been presented as a theoretical mathematical derivation within the probability theory that is applied in a given fields of study like statistics, mathematics, gambling, philosophy, finance, science, and artificial machine/intelligence learning. For instance, draw deductions concerning the likeliness of incidents. Probability is applied to show the underlying technicalities and regularities of intricate systems. Nevertheless, the term probability does not have any one straight definition for experimental application. Moreover, there are a number of wide classifications of probability whose supporters have varied or even conflicting observations concerning the vital state of probability. Just as other......

Words: 335 - Pages: 2

Premium Essay

Probability

...PROBABILITY SEDA YILDIRIM 2009421051 DOKUZ EYLUL UNIVERSITY MARITIME BUSINESS ADMINISTRATION   CONTENTS Rules of Probability 1 Rule of Multiplication 3 Rule of Addition 3 Classical theory of probability 5 Continuous Probability Distributions 9 Discrete vs. Continuous Variables 11 Binomial Distribution 11 Binomial Probability 12 Poisson Distribution 13 PROBABILITY Probability is the branch of mathematics that studies the possible outcomes of given events together with the outcomes' relative likelihoods and distributions. In common usage, the word "probability" is used to mean the chance that a particular event (or set of events) will occur expressed on a linear scale from 0 (impossibility) to 1 (certainty), also expressed as a percentage between 0 and 100%. The analysis of events governed by probability is called statistics. There are several competing interpretations of the actual "meaning" of probabilities. Frequentists view probability simply as a measure of the frequency of outcomes (the more conventional interpretation), while Bayesians treat probability more subjectively as a statistical procedure that endeavors to estimate parameters of an underlying distribution based on the observed distribution. The conditional probability of an event A assuming that B has occurred, denoted ,equals The two faces of probability introduces a central ambiguity which has been around for 350 years and still leads to disagreements about...

Words: 3252 - Pages: 14

Free Essay

Probability

...Massachusetts Institute of Technology 6.042J/18.062J, Fall ’02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Course Notes 10 November 4 revised November 6, 2002, 572 minutes Introduction to Probability 1 Probability Probability will be the topic for the rest of the term. Probability is one of the most important subjects in Mathematics and Computer Science. Most upper level Computer Science courses require probability in some form, especially in analysis of algorithms and data structures, but also in information theory, cryptography, control and systems theory, network design, artificial intelligence, and game theory. Probability also plays a key role in fields such as Physics, Biology, Economics and Medicine. There is a close relationship between Counting/Combinatorics and Probability. In many cases, the probability of an event is simply the fraction of possible outcomes that make up the event. So many of the rules we developed for finding the cardinality of finite sets carry over to Probability Theory. For example, we’ll apply an Inclusion-Exclusion principle for probabilities in some examples below. In principle, probability boils down to a few simple rules, but it remains a tricky subject because these rules often lead unintuitive conclusions. Using “common sense” reasoning about probabilistic questions is notoriously unreliable, as we’ll illustrate with many real-life examples. This reading is longer than usual . To keep things in......

Words: 18516 - Pages: 75